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Measurable combinatorics

≡ find measurable solution to combinatorial problems on
measurable graphs.

Example: Let F ⊆ Z be finite. When does F admit a tiling
complement F ⊕ A = Z?

Dynamical version: Let F ⊆ Z be finite set that admits a tiling
complement, and ψα be a rotation of the circle S1 by an irrational
angle α. Is there a measurable set Ω ⊆ S1 such that

S1 =
⊔
f ∈F

(ψα)
f (Ω)?

Answer: Yes if |F | = 1.
No otherwise.
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Translational monotilings

Let G be an abelian group

and G ↷ (X , µ) be an action that
preserves the measure µ.

Definition
We say that Ω ⊆ X is a tile if 0 < µ(Ω) <∞ and there is T ⊆ G
such that

Ω⊕ T =
⊔
t∈T

(Ω + t) = X .

That is, (a) for every x ∈ X there are t ∈ T and ω ∈ Ω such that
t · ω = x , and (b) µ((t · Ω) ∩ (s · Ω)) = 0 for every t ̸= s ∈ T . In
that case, we say that T is a tiling of X by Ω.
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▶ (Mycielski, Wagon) Is 3-divisibility of S2 possible with
measurable pieces?



Translational monotilings

Examples:

▶ Translation action of Rd on Rd .

▶ Translation action of Rd on Td .

▶ Translation action of Zd on Zd .

Problems:

▶ (Mycielski, Wagon) Is 3-divisibility of S2 possible with
measurable pieces?



Translational monotilings

Examples:

▶ Translation action of Rd on Rd .

▶ Translation action of Rd on Td .

▶ Translation action of Zd on Zd .

Problems:

▶ (Mycielski, Wagon) Is 3-divisibility of S2 possible with
measurable pieces?



Translational monotilings

Examples:

▶ Translation action of Rd on Rd .

▶ Translation action of Rd on Td .

▶ Translation action of Zd on Zd .

Problems:

▶ (Mycielski, Wagon) Is 3-divisibility of S2 possible with
measurable pieces?



Translational monotilings

Examples:

▶ Translation action of Rd on Rd .

▶ Translation action of Rd on Td .

▶ Translation action of Zd on Zd .

Problems:

▶ (Mycielski, Wagon) Is 3-divisibility of S2 possible with
measurable pieces?



Translational monotilings

Examples:

▶ Translation action of Rd on Rd .

▶ Translation action of Rd on Td .

▶ Translation action of Zd on Zd .

Problems:

▶ (Mycielski, Wagon) Is 3-divisibility of S2 possible with
measurable pieces?



Translational monotilings

Examples:

▶ Translation action of Rd on Rd .

▶ Translation action of Rd on Td .

▶ Translation action of Zd on Zd .

Problems:

▶ Characterize tilings and measurable tiles on the circle S1.

▶ What about higher dimensional tori Td and Rd? Periodicity,
weak periodicty etc.

▶ What is the limitation of the dilation lemma technique?



Translational monotilings

Examples:

▶ Translation action of Rd on Rd .

▶ Translation action of Rd on Td .

▶ Translation action of Zd on Zd .

Problems:

▶ Characterize tilings and measurable tiles on the circle S1.

▶ What about higher dimensional tori Td and Rd? Periodicity,
weak periodicty etc.

▶ What is the limitation of the dilation lemma technique?



Translational monotilings

Examples:

▶ Translation action of Rd on Rd .

▶ Translation action of Rd on Td .

▶ Translation action of Zd on Zd .

Problems:

▶ Characterize tilings and measurable tiles on the circle S1.

▶ What about higher dimensional tori Td and Rd? Periodicity,
weak periodicty etc.

▶ What is the limitation of the dilation lemma technique?



Translational monotilings

Examples:

▶ Translation action of Rd on Rd .

▶ Translation action of Rd on Td .

▶ Translation action of Zd on Zd .

Problems:

▶ Characterize tilings and measurable tiles on the circle S1.

▶ What about higher dimensional tori Td and Rd? Periodicity,
weak periodicty etc.

▶ What is the limitation of the dilation lemma technique?



II. Dilation lemma



Dilation Lemma

Let F ⊆ Zd be a finite set such that 0 ∈ F , and t ∈ Z.

Then define

F t = {t · q : q ∈ F}.

Lemma (Greenfeld–Tao ’21)

Let F ⊆ Zd be finite such that 0 ∈ F , T ⊆ Zd be such that
F ⊕ T = Zd and q = |F |. Then

F t ⊕ T = Zd

for every integer t coprime to q.
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Application 1

We say that a tiling T of Zd by F is weakly periodic

if there is a
decomposition

T = T1 ⊔ · · · ⊔ Tm

such that Ti is ⟨hi ⟩-invariant for some hi ∈ Zd \ {0} for every
1 ≤ i ≤ m.

Theorem (Greenfeld–Tao ’21)

Let T be a tiling of Z2 by a finite set F . Then T is weakly
periodic.

Corollary (Bhattacharya ’20)

Periodic tiling conjecture holds in Z2.
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Application 2

Let F ⊆ Zd be finite

and S ⊆ Z2 be such that

F ⊕ S = A× Z

for some finite A ⊆ Z.

Then S is a union of columns, that is,

▶ p1(F ) tiles A, meaning that

p1(F )⊕ p1(S) = A,

▶ for every s ∈ p1(S) we have that

F ⊕ p−1
1 ({s}) = (p1(F ) + s)× Z,

where p1 denotes the projection to the first coordinate.
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Let

▶ Td = S1 × · · · × S1 be the d-dimensional torus, where d ≥ 1,

▶ T ⊆ Rd be a tiling of Td by a measurable set Ω of positive
measure, i.e., Ω⊕ T = Td and T is finite.

Theorem (Measurable dilation, G.–Greenfeld–Rozhoň–Tao ’23)

In the above setup, we have that

Ω⊕ T r = Td

whenever r is coprime to |T |.
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Let Zm φ−→ ⟨T ⟩ be a surjection and view T ⊆ Zm. Pick a generic
x ∈ Td , and define

A = {h ∈ Zm : h + x ∈ Ω}.

Then T ⊕ A = Zm and the standard dilation lemma applies.
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Corollary

Let T be a tiling of S1 = T1 by a measurable set Ω that has
positive measure, i.e.,

Ω⊕ T = S1.

Then T is rational, that is, there is p ∈ πQ ∩ S1 such that T lies
in a coset of ⟨p⟩.

▶ (Lagarias–Wang ’96) Same result for closed sets with null
boundary.

▶ One gets rationality results in higher dimensions as well.
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Application 4.

Joint work with de Dios Pont, Greenfeld and Madrid.



Tilings in R2

▶ For A ⊆ R2, we define

Γ(A) = {g ∈ R2 : A+ g = A}

the set of translational symmetries.

▶ We say that A is periodic if Γ(A) contains a lattice.

Conjecture (PTC in R2)

Suppose that Ω ⊆ R2 is a tile. Then there is a periodic tiling
S ⊆ R2 of R2 by Ω.
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▶ (Newman ’77)
PTC holds in Z.
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PTC holds in Z2.

▶ (Greenfeld–Tao ’24)
PTC fails in Zd and Rd for d ∈ N large enough.
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Our results

We study tilings of R2 by an axes parallel polygonal set Ω.

Theorem
Let Ω ⊆ R2 be an axes parallel polygonal tile. Then there is a
tiling S ⊆ R2 of R2 by Ω such that

▶ S is 1-periodic, that is, Γ(S) ̸= {0},
▶ S is quasi-periodic, that is, there is a decomposition

S = S1 ⊔ · · · ⊔ Sℓ

such that Si is periodic for every 1 ≤ i ≤ ℓ.
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Finite local complexity (FLC)

Definition
We say that T ⊆ R2 has finite local complexity (FLC) if the set

{(B(t,R) ∩ T )− t : t ∈ T}

is finite for every R > 0, where B(x , r) is the closed ball of radius r
around x ∈ R2.

Examples:

▶ Let Γ be a lattice and {ai}ki=1 ⊆ R2, then
⋃k

i=1(Λ + ai ) has
FLC. In particular, periodic tilings have FLC.

▶ Let α be irrational. Then

T = {(a, b) : a, b ∈ Z} ∪ {(a+ 1/2, αa+ b) : a, b ∈ Z}

does not have FLC, and it is is a tiling of R2 by an axes
parallel polygonal set Ω.
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Finite local complexity (FLC)

Theorem
Let T be a tiling of R2 by an axes parallel polygonal tile Ω ⊆ R2

that has FLC. Then T is weakly periodic and there is a periodic
tiling S of R2 by Ω.

▶ There is a good approximation φ of T and Ω that turns it

into a tiling of the form Ωφ ⊕ Tφ =
(
1
kZ

)2
for some k ∈ N.

▶ The same is true if we only tile a periodic set E = Ω⊕ T .
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Kenyon’s earthquake argument for non FLC

Suppose that Ω⊕ T = R2 and T does not have FLC as witnessed
by the infinite set

{(B(ti ,R) ∩ T )− ti}∞i=1.

Define S to be the weak limit of a subsequence of (T − ti )
∞
i=1.

▶ S is a tiling of R2 by Ω.

▶ There is a copy of R that is a subset of ∂(Ω) + S .
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Earthquake decomposition
Let T be a tiling of R2 by Ω.

Definition
The (vertical) earthquake decomposition of T is a maximal
partition T =

⊔
i∈I Ti such that Ω + Ti is R(0, 1)-invariant for

every i ∈ I .

▶ Maximal means that each Ti cannot be split further
Ti = T ′

i ⊔ T ′′
i .

▶ R(0, 1)-invariant means that if x ∈ Ω+ Ti , then
x + (0, r) ∈ Ω+ Ti for every r ∈ R.

▶ Horizontal earthquake definition is defined analogously.
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FLC and earthquake dichotomy

Theorem (Dichotomy)

Let T be a tiling of R2 by an axes parallel polygonal set Ω. Then
one of the following holds:

(a) T has finite local complexity (FLC),

(b) there is a weak limit

S = lim
i→∞

(T − ti )

for some ti ∈ T such that S = S0 ⊔ S1 is a non-trivial
decomposition and both Ω⊕ Si are R(0, 1)-invariant (or
R(1, 0)-invariant) and periodic.
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FLC and earthquake dichotomy

Iterating the dichotomy theorem, or to be more precise, using
compactness of the space of tilings under weak convergence, we
get the following.

Theorem
Let T be a topologically minimal tiling of R2 by an axes parallel
polygonal set Ω. Then we can write T = Tc ⊔ T1 ⊔ · · · ⊔ Tm such
that

▶ Ti is from the earthquake decomposition of T for every
1 ≤ i ≤ m,

▶ Ω⊕ Ti is periodic for every 1 ≤ i ≤ m,

▶ Ti has finite local complexity for every 1 ≤ i ≤ m,

▶ Tc is a union of columns, that is, those S ⊆ T such that
Ω⊕ S is R(0, 1)-invariant and of the form T ∩ ({x} × R) for
some x ∈ R.
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Thank you!


